Основные элементы холодильного оборудования. Устройство и принцип действия холодильной машины

Охлаждение подразделяется на естественное и искусственное. На первое энергия не тратится. Причем температура объекта стремится к температуре окружающего воздуха. Искусственное охлаждение представляет собой снижение температуры объекта до уровня ниже такого же показателя среды. Для такого охлаждения нужны холодильные машины или устройства. Обычно они применяются в промышленности для достижения нужных условий хранения, течения химических реакций, безопасности. Тепловые и холодильные машины очень широко применяются и в быту. Их принцип работы базируется на явлениях сублимации и конденсации.

Охлаждение льдом

Это самый доступный и простой вид охлаждения. Особенно удобен он в районах, где есть возможность накопления естественного льда.

В качестве средства охлаждения лед используется в процессе заготовки и хранения рыбы, при краткосрочном хранении овощной продукции, транспортировке пищевых продуктов в охлажденном виде. Лед применяется в погребах и ледниках. В таком оборудовании очень важна теплоизоляция. В стационарных ледниках стены гидро- и теплоизолированы. Они рассчитаны на температурный диапазон +5...+8°С.

Льдосоляное охлаждение

Льдосоляной метод охлаждения позволяет достичь поддержки еще более низких температурных условий в объеме, подвергаемом охлаждению. Совместное использование льда и соли дает возможность снизить температуру, при которой лед тает. Таков принцип. Принцип холодильной машины.

Для этой цели смешивается лед и хлористый натрий. В зависимости от концентрации соли температура льда колеблется от -1,8 до -21,2°С.

До минимума температура плавления доходит, если соли в смеси 23%. В этом случае лед не тает при минимальном показателе.

Сухой лед служит для поддержания низких температур в процессе хранения фруктов, мороженого, овощей, полуфабрикатов. Так называют твердое состояние углекислоты. При атмосферном давлении и нагреве она из твердой становится газообразной, пропуская фазу жидкости. Производительность холода у сухого льда вдвое больше, чем у водяного. Когда происходит сублимация сухого льда, получается углекислый газ, который, помимо всего прочего, выполняет консервирующие функции, способствуя сохраннности продуктов.

Методы охлаждения с использованием льда имеют и ряд недостатков, ограничивающих их применение. В связи с этим главным методом генерации холода становится машинное охлаждение.

Искусственное охлаждение

Машинное охлаждение представляет собой производство холода, которое производят холодильные машины и установки. У этого способа есть несколько достоинств:

  • в автоматическом режиме сохраняется неизменный уровень температуры, различный для разных групп продуктов;
  • оптимально задействовано охлаждаемое пространство;
  • удобно эксплуатировать охлаждаемые помещения;
  • небольшие затраты на техобслуживание.

Как работает

Принцип работы холодильной машины таков. Безусловно, человеку, который только лишь пользуется холодильной машиной или разыскивает ее, совсем не обязательно глубоко и всесторонне разбираться в работе холодильных машин. При этом знание основополагающих принципов работы таких установок будет совсем не лишним. Эта информация способна оказать помощь в осознанном выборе оборудования и облегчит беседу с профессионалами при выборе холодильного оборудования.

Также важно разбираться, как происходит работа холодильной машины. В ситуациях, когда холодильное оборудование отказывает и требуется вызов специалиста, имеет смысл вникнуть в принцип действия подобных машин. Ведь понимание объяснений специалиста о том, что нужна замена или ремонт какой-либо детали холодильной машины, позволит не потерять лишних денег.

Главный принцип работы холодильной машины - отвод тепла от объекта, подвергаемого охлаждению, и его перенос к другому объекту. Важно понимание того, что нагревание или сжатие объекта сопровождается передачей ему энергии, а охлаждение и расширение отбирает энергию. На этом основана передача тепла.

Для переноса тепла холодильные машины используют хладагенты - специальные вещества, отнимающие теплоту у объекта охлаждения в ходе кипения и расширения при постоянной температуре. В дальнейшем после сжатия энергия передается охлаждающей среде посредством конденсации.

Назначение отдельных узлов

Компрессором холодильной машины обеспечивается кругооборот хладагента в системе, его кипение в испарителе с нагнетанием в блок конденсатора.

Он призван отсасывать хладагент фреон в газообразном состоянии из испарителей, и, сжимая, нагнетать в конденсатор, где он превращается в жидкость. Затем фреон в жидком состоянии накапливается в ресивере. Этот узел оборудован входными и выходными запорными вентилями. Дальнейший путь хладагента - из ресивера в фильтр-осушитель. Здесь остатки влаги и примеси удаляются и поступают в испаритель.

В испарителе хладагент достигает кипения, что отбирает теплоту у охлаждаемого объекта. Далее хладагент уже в газообразном состоянии попадает из испарителя в компрессор, очищаясь через фильтр от загрязнений. Далее рабочий цикл агрегата повторяется, это и есть принцип. Принцип холодильной машины.

Холодильный агрегат

Объединение совокупности деталей и узлов холодильной машины на едином каркасе принято называть холодильным агрегатом. Совмещение узлов холодильной машины производителем делает удобнее монтаж, и происходит он быстрее.

Холодопроизводительность таких агрегатов - параметр, представляющий собой количество тепла, отнимаемое у среды, подвергаемой охлаждению за один час. При различных режимах работы производительность холода варьируется в широком диапазоне. Когда растет температура конденсации и понижается градус испарения, производительность уменьшается.

Хладагенты

Холодильные машины, используемые в торговых организациях, в роли хладагентов используют хладон или фреон, а для заморозки в промышленных масштабах - аммиак.

Хладон представляет собой тяжелый газ без цвета и со слабым запахом, ощутимым, лишь когда его концентрация в воздухе достигает 20%. Газ не горюч и не взрывчат. В хладоне хорошо растворимы смазочные масла. При больших температурах они составляют с ним однородную смесь. Хладон не влияет на вкусовые качества, аромат и цвет продуктов.

В холодильных установках с хладоном не должно быть более 0,006% массы влаги. Иначе она замерзает в тонких трубках, препятствуя работе холодильной машины. Из-за высокой текучести газа нужна хорошая герметизация агрегатов.

Аммиак - бесцветный резко пахнущий газ, опасный для человеческого организма. Его допустимое содержание в воздухе — 0,02 мг/л. Когда концентрация доходит до 16%, возможен взрыв. При содержании газа свыше 11% и открытом пламени рядом начинается горение.

Рефрижерация - это процесс, при котором температура помещения снижается ниже температуры наружного воздуха.

Кондиционирование воздуха - это регулирование температуры и влажности в помещении с одновременным осуществлением фильтрации воздуха, циркуляции и частичной его замены в помещении.

Вентиляция - это циркуляция и замена воздуха в помещении без изменения его температуры. За исключением специальных процессов, таких как замораживание рыбы, воздух обычно используется как промежуточное рабочее тело, передающее теплоту. Поэтому для осуществления рефрижерации, кондиционирования и вентиляции применяют вентиляторы и воздухопроводы. Три названные выше процесса тесно связаны между собой и совместно обеспечивают заданный микроклимат для людей, машин и груза.

Для снижения температуры в грузовых трюмах и в провизионных кладовых при рефрижерации применяют систему охлаждения работа которой обеспечивается холодильной машиной. Отобранная теплота передается другому телу -- холодильному агенту при низкой температуре. Охлаждение воздуха при кондиционировании представляет собой аналогичный процесс.

В простейших схемах холодильных установок передача теплоты осуществляется дважды: сначала в испарителе, где холодильный агент, имеющий низкую температуру, отбирая теплоту от охлаждаемой среды, снижает ее температуру, затем в конденсаторе, где холодильный агент охлаждается, отдавая теплоту воздуху или воде. В наиболее распространенных схемах морских рефрижераторных установок осуществляется паровой компрессионный цикл. В компрессоре давление пара холодильного агента повышается и соответственно повышается его температура.

Схема паровой компрессорной холодильной установки:

1 - испаритель; 2 - термочувствительный баллон; 3 - компрессор; 4 - маслоотделитель; 5 - конденсатор; 6 - осушитель; 7 - трубопровод для масла; 8 - регулирующий вентиль; 9 - терморегулирующий вентиль.

Этот горячий пар, имеющий повышенное давление, нагнетается в конденсатор, где в зависимости от условий применения установки пар охлаждается воздухом или водой. Ввиду того что этот процесс осуществляется при повышенном давлении, пар полностью конденсируется. Жидкий холодильный агент направляется по трубопроводу к регулирующему вентилю, который регулирует подачу жидкого холодильного агента в испаритель, где поддерживается низкое давление. Воздух из охлаждаемого помещения или кондиционируемый воздух проходит через испаритель, вызывает кипение жидкого холодильного агента и сам, отдавая теплоту, при этом охлаждается. Подача холодильного агента в испаритель должна быть отрегулирована так, чтобы в испарителе весь жидкий холодильный агент выкипел, а пар слегка перегрелся перед тем, как он снова поступит при низком давлении в компрессор для последующего сжатия. Таким образом, теплота, которая была передана от воздуха к испарителю, переносится холодильным агентом по системе до тех пор, пока не достигнет конденсатора, где она будет передана наружному воздуху или воде. В установках, где применяется конденсатор с воздушным охлаждением, как, например, в малой провизионной холодильной установке, должна быть предусмотрена вентиляция для отвода теплоты, выделенной в конденсаторе. Конденсаторы с водяным охлаждением с этой целью прокачивают пресной или забортной водой. Пресная вода применяется в тех случаях, когда и другие механизмы машинного отделения охлаждаются пресной водой, которая затем охлаждается забортной водой в централизованном водоохладителе. В этом случае из-за более высокой температуры воды, охлаждающей конденсатор, температура выходящей из конденсатора воды будет выше, чем при охлаждении конденсатора непосредственно забортной водой.

Холодильные агенты и хладоносители. Охлаждающие рабочие тела делятся в основном на первичные - холодильные агенты и вторичные - хладоносители.

Холодильный агент под воздействием компрессора циркулирует через конденсатор и испарительную систему. Холодильный агент должен обладать определенными свойствами, отвечающими предъявленным требованиям, например кипеть при низкой температуре и избыточном давлении и конденсироваться при температуре, близкой к температуре забортной воды, и умеренном давлении. Холодильный агент также должен быть нетоксичен, взрывобезопасен, негорюч, не вызывать коррозии. Некоторые холодильные агенты имеют низкую критическую температуру, т. е. температуру, выше которой пар холодильного агента не конденсируется. Это один из недостатков холодильных агентов, в частности углекислоты, которая применялась много лет на судах. Вследствие низкой критической температуры углекислоты значительно затруднялась эксплуатация судов с углекислотными холодильными установками в широтах с высокими температурами забортной воды и из-за этого приходилось использовать дополнительные охлаждающие конденсатор системы. Кроме того, к недостаткам углекислоты относится очень высокое давление, при котором система работает, что в свою очередь приводит к увеличению массы машины в целом. После углекислоты в качестве холодильных агентов определенное распространение имели хлористый метил и аммиак. В настоящее время хлористый метил на судах не применяется из-за его взрывоопасности. Аммиак имеет некоторое применение до сих пор, но ввиду высокой токсичности при его использовании необходимы специальные вентиляционные системы. Современные холодильные агенты - это соединения фторированного углеводорода, имеющие различные формулы, за исключением холодильного агента R502 (в соответствии с международным стандартом (MС) НСО 817 - для обозначения холодильных агентов применяется условное обозначение холодильного агента, которое состоит из символа R (refrigerant) и определяющего числа. В связи с этим при переводе введено обозначение холодильных агентов R.), который представляет собой азеотропную (с фиксированной точкой кипения) смесь (специфическая смесь различных веществ, обладающая свойствами, отличными от свойств каждого вещества в отдельности.) холодильных агентов R22 и R115. Эти холодильные агенты известны под названием фреоны (Согласно ГОСТ 19212 -- 73 (изменение 1) для фреона установлено название хладон), а каждый из них имеет определяющее число.

Холодильный агент R11 имеет очень низкое рабочее давление, для получения значительного охлаждающего эффекта необходима интенсивная циркуляция агента в системе. Преимущество этого агента особенно проявляется при использовании в установках кондиционирования воздуха, поскольку для воздуха требуются относительно малые затраты мощности.

Первым из фреонов, после того как они были открыты и стали доступны, получил широкое практическое применение фреон R12. К его недостаткам относится низкое (ниже атмосферного) давление кипения, в результате чего из-за любых неплотностей в системе появляется подсос в систему воздуха и влаги.

В настоящее время наиболее распространенным холодильным агентом является R22, благодаря которому обеспечивается охлаждение на достаточно низком температурном уровне при избыточном давлении кипения. Это позволяет получить некоторый выигрыш в объеме цилиндров компрессора установки и другие преимущества. Объем, описываемый поршнем компрессора, работающего на фреоне R22, составляет примерно 60% по сравнению с описываемым объемом поршня компрессора, работающего на фреоне R12 при тех же условиях.

Примерно такой же выигрыш получается при применении фреона R502. Кроме того, из-за более низкой температуры нагнетания компрессора уменьшается вероятность коксования смазочного масла и поломки нагнетательных клапанов.

Все названные холодильные агенты не вызывают коррозии и могут применяться в герметических и бессальниковых компрессорах. В меньшей степени воздействует на лаки и пластические материалы применяемый в электродвигателях и компрессорах холодильный агент R502. В настоящее время этот перспективный холодильный агент стоит еще достаточно дорого и поэтому не получил широкого применения.

Хладоносители применяются в крупных установках кондиционирования воздуха и в холодильных установках, охлаждающих грузы. В этом случае через испаритель циркулирует хладоноситель, который затем направляется в помещение, подлежащее охлаждению. Хладоноситель применяется тогда, когда установка велика и разветвлена, для того чтобы исключить необходимость в циркуляции в системе большого количества дорогостоящего холодильного агента, который имеет очень высокую проникающую способность, т. е. может проникать через малейшие неплотности, поэтому очень существенно свести к минимуму число соединений трубопроводов в системе. Для установок кондиционирования воздуха обычным хладоносителем является пресная вода, которая может иметь добавку раствора гликоля.

Наиболее распространенным хладоносителем в больших рефрижераторных установках является рассол -- водный раствор хлористого кальция, к которому для уменьшения коррозии добавляют ингибиторы.

Охлаждение различных объектов - продуктов питания, воды, других жидкостей, воздуха, технических газов и др. до температур ниже температуры окружающей среды происходит с помощью холодильных машин различных типов. Холодильная машина по большому счету не производит холод, она является лишь своеобразным насосом, который переносит теплоту от менее нагретых тел к более нагретым. Основан же процесс охлаждения на постоянном повторении т.н. обратного термодинамического или другими словами холодильного цикла. В самом распространенном парокомпрессионном холодильном цикле перенос теплоты происходит при фазовых превращениях хладагента – его испарении (кипении) и конденсации за счет потребления подведенной извне энергии.

Основными элементами холодильной машины, с помощью которых реализуется ее рабочий цикл, являются:

  • компрессор – элемент холодильного цикла, обеспечивающий повышение давления хладагента и его циркуляцию в контуре холодильной машины;
  • дросселирующее устройство (капиллярная трубка, терморегулирующий вентиль) служит регулирования количества хладагента, попадающего в испаритель в зависимости от перегрева на испарителе.
  • испаритель (охладитель) – теплообменник, в котором происходит кипение хладагента (с поглощением тепла) и непосредственно сам процесс охлаждения;
  • конденсатор – теплообменник, в котором в результате фазового перехода хладагента из газообразного состояния в жидкое, отведенная теплота сбрасывается в окружающую среду.

При этом необходимо наличие в холодильной машине других вспомогательных элементов, – электромагнитные (соленоидные) вентили, контрольно-измерительные приборы, смотровые стекла, фильтры-осушители и т.д. Все элементы соединены между собой в герметичный внутренний контур с помощью трубопроводов с теплоизоляцией. Контур холодильной машины заполняется хладагентом в необходимом количестве. Основной энергетической характеристикой холодильной машины является холодильный коэффициент, который определяется отношением количества тепла, отведенного от охлаждаемого источника, к затраченной энергии.

Холодильные машины в зависимости от принципов работы и применяемого хладагента бывают нескольких типов. Наиболее распространенные парокомпрессионные, пароэжекторные, абсорбционные, воздушные и термоэлектрические.

Хладагент


Хладагент – рабочее вещество холодильного цикла, основной характеристикой которого является низкая температура кипения. В качестве хладагентов чаще всего применяют различные углеводородные соединения, которые могут содержать атомы хлора, фтора или брома. Также хладагентом могут быть аммиак, углекислый газ, пропан и т.д. Реже в качестве хладагента применяют воздух. Всего известно около сотни типов хладагентов, но изготавливается промышленным способом и широко применяется в холодильной, криогенной технике, кондиционировании воздуха и других отраслях всего около 40. Это R12, R22, R134A, R407C, R404A, R410A, R717, R507 и другие. Основная область применения хладагентов – это холодильная и химическая промышленность. Кроме того, некоторые фреоны используют в качестве пропеллентов при производстве различной продукции в аэрозольной упаковке; вспенивателей при производстве полиуретановых и теплоизолирующих изделий; растворителей; а также в качестве веществ, тормозящих реакцию горения, для систем пожаротушения различных объектов повышенной опасности – тепловых и атомных электростанций, гражданских морских судов, боевых кораблей и подводных лодок.

Терморегулирующий вентиль (ТРВ)


Терморегулирующий вентиль (ТРВ) – один из основных компонентов холодильных машин, известен как наиболее распространенный элемент для дросселирования и точного регулирования подачи хладагента в испаритель. ТРВ использует в качестве регулятора расхода хладагента клапан игольчатого типа, примыкающий к основанию тарельчатой формы. Количество и расход хладагента определяется проходным сечением ТРВ и зависит от температуры на выходе из испарителя. При изменении температуры хладагента на выходе из испарителя, давление внутри этой системы меняется. При изменении давления меняется проходное сечение ТРВ и, соответственно, меняется расход хладагента.

Термосистема заполнена на заводе-изготовителе точно определенным количеством того же хладагента, который является рабочим веществом данной холодильной машины. Задача ТРВ – дросселирование и регулирование расхода хладагента на входе в испаритель таким образом, чтобы в нем наиболее эффективно проходил процесс охлаждения. При этом хладагент должен полностью перейти в парообразное состояние. Это необходимо для надежной работы компрессора и исключения его работы т.н. «влажным» ходом (т.е. сжатие жидкости). Термобаллон крепится на трубопровод между испарителем и компрессором, причем в месте крепления необходимо обеспечить надежный термический контакт и теплоизоляцию от воздействия температуры окружающей среды. Последние 15-20 лет в холодильной технике стали получать широкое распространение электронные ТРВ. Они отличаются тем, что у них отсутствует выносная термосистема, а ее роль играет терморезистор, закрепленный на трубопроводе за испарителем, связанный кабелем с микропроцессорным контролером, который в свою очередь управляет электронным ТРВ и вообще всеми рабочими процессами холодильной машины.


Соленоидный вентиль служит для двухпозиционного регулирования («открыто-закрыто») подачи хладагента в испаритель холодильной машины либо для открытия-закрытия от внешнего сигнала определенных участков трубопроводов. При отсутствии питания на катушке тарелка клапана под воздействием специальной пружины удерживает соленоидный вентиль закрытым. При подаче питания сердечник электромагнита, соединенный штоком с тарелкой, преодолевает усилие пружины, втягивается в катушку, тем самым приподнимая тарелку и открывая проходное сечение вентиля для подачи хладагента.


Смотровое стекло в холодильной машине предназначено для определения:

  1. состояния хладагента;
  2. наличие влаги в хладагенте, которое определяется цветом индикатора.

Смотровое стекло обычно монтируют в трубопроводе на выходе из накопительного ресивера. Конструктивно смотровое стекло представляет собой металлический герметичный корпус с окном из прозрачного стекла. Если при работе холодильной машины в окне наблюдается поток жидкости с отдельными пузырями парообразного хладагента, то это может свидетельствовать о недостаточной заправке или других неисправностях в ее функционировании. Может устанавливаться и второе смотровое стекло на другом конце указанного выше трубопровода, в непосредственной близости от регулятора расхода, которым может быть соленоидный вентиль, ТРВ или капиллярная трубка. Цвет индикатора показывает наличие или отсутствие влаги в холодильном контуре.


Фильтр-осушитель или цеолитовый патрон еще один важный элемент контура холодильных машин. Он необходим для удаления влаги и механических загрязнений из хладагента, тем самым защищая от засорения ТРВ. Обычно он монтируется с помощью паяных или штуцерных соединений непосредственно в трубопровод между конденсатором и ТРВ (соленоидным вентилем, капиллярной трубкой). Чаще всего конструктивно представляет собой отрезок медной трубы диаметром 16…30 и длиной 90…170 мм, закатанный с обеих сторон и с присоединительными патрубками. Внутри по краям установлены две металлические фильтрующие сетки, между которыми расположен гранулированный (1,5…3,0 мм) адсорбент, обычно это синтетический цеолит. Это т.н. разовый фильтр-осушитель, но существуют многоразовые конструкции фильтров с разборным корпусом и резьбовыми трубопроводными соединениями, требующими только время от времени замены внутреннего цеолитового картриджа. Замена разового фильтра- осушителя или картриджа необходима после каждого вскрытия внутреннего контура холодильной машины. Существуют одно-направленные фильтры, предназначенные для работы в системах «только холод» и дву-направленные, используемые в агрегатах «тепло-холод».

Ресивер


Ресивер – герметичный цилиндрический накопительный бак различной емкости, изготовленный из стального листа, и служащий для сбора жидкого хладагента и его равномерной подачи к регулятору расхода (ТРВ, капиллярная трубка) и в испаритель. Существуют ресиверы как вертикального, так и горизонтального типа. Различают линейные, дренажные, циркуляционные и защитные ресиверы. Линейный ресивер устанавливается с помощью паяных соединений в трубопровод между конденсатором и ТРВ и выполняет следующие функции:

  • обеспечивает непрерывную и бесперебойную работу холодильной машины при различных тепловых нагрузках;
  • является гидравлическим затвором, препятствующим попаданию пара хладагента в ТРВ;
  • выполняет функцию масло- и воздухоотделителя;
  • освобождает трубы конденсатора от жидкого хладагента.

Дренажные ресиверы служат для сбора и хранение всего количества заправленного хладагента на время ремонтных и сервисных работ, связанных с разгерметизацией внутреннего контура холодильной машины.

Циркуляционные ресиверы применяют в насосно-циркуляционных схемах подачи жидкого хладагента в испаритель для обеспечения непрерывной работы насоса и монтируют в трубопровод после испарителя в точку с самой низкой отметкой по высоте для свободного слива в него жидкости.

Защитные ресиверы предназначены для безнасосных схем подачи фреона в испаритель, их устанавливают совместно с отделителями жидкости во всасывающий трубопровод между испарителем и компрессором. Они служат для защиты компрессора от возможной работы «влажным» ходом.


Регулятор давления – автоматически управляемый регулирующий клапан, применяемый для снижения либо поддержания давления хладагента путем изменения гидравлического сопротивления потоку проходящего через него жидкого хладагента. Конструктивно состоит из трех основных элементов: регулирующего клапана, его исполнительного механизма и измерительного элемента. Исполнительный механизм непосредственно воздействует на тарелку клапана, изменяя или закрывая проходное сечение. Измерительный элемент сравнивает текущее и заданное значение давления хладагента и формирует управляющий сигнал для исполнительного механизма регулирующего клапана. В холодильной технике существуют регуляторы низкого давления, чаще называемые прессостатами. Они управляют давлением кипения в испарителе, их устанавливают во всасывающий трубопровод за испарителем. Регуляторы высокого давления называют маноконтроллерами. Их чаще всего применяют в холодильных машинах с воздушным охлаждением конденсатора для поддержания минимально необходимого давления конденсации при понижении температуры наружного воздуха в переходный и холодный период года, обеспечивая тем самым т.н. зимнее регулирование. Маноконтроллер устанавливают в нагнетательный трубопровод между компрессором и конденсатором.

На молочном комбинате используют одноступенчатую схему холодильной установки.

1 - компрессор; 2 - конденсатор; 3 - испарителей; 4 - ресивер ;

5 - отделитель жидкости; 6 - маслоотделитель; 7 - соленоидный вентиль;

9 - фильтр-осушитель; 10 - фильтр; 11 - фильтр на всасывающей магистрали; 12 - смотровое стекло с индикатором влажности; 13 - смотровое стекло;

14 - реле высокого давления; 15 - реле низкого давления; 16 - аварийное реле высокого и низкого давлений; 17 - терморегулирующим вентиль; 18 - реле контроля давления масла; 19 - запорный вентиль ресивера; 20 - запорный вентиль компрессора; 21 - картерный нагреватель; 25, 26 - виброизоляторы.

Рисунок 4 - Схема холодильной установки

Процесс охлаждения основан на физическом явлении поглощения тепла при кипении (испарении) жидкости (жидкого хладагента). Компрессор холодильной машины предназначен для отсасывания газа из испарителя и сжатия, нагнетания его в конденсатор. При сжатии и нагревании паров хладагента мы сообщаем им энергию (или тепло), охлаждая и расширяя, мы отбираем энергию. Это основной принцип, на основе которого происходит перенос тепла и работает холодильная установка. В холодильном оборудовании для переноса тепла применяют хладагенты.

Холодильный компрессор (1) отсасывает газообразный хладагент из испарителей (3), сжимает его и нагнетает в конденсатор (2) (воздушный или водяной). В конденсаторе (2) хладагент конденсируется и переходит в жидкое состояние. Из конденсатора (2) жидкий хладагент попадает в ресивер (4), где происходит его накопление. Также ресивер необходим для постоянного поддержания необходимого уровня хладагента. Ресивер оснащен запорными вентилями (19) на входе и выходе. Из ресивера хладагент поступает в фильтр-осушитель (9), где происходит удаление остатков влаги, примесей и загрязнений, после этого проходит через смотровое стекло с индикатором влажности (12), соленоидный вентиль(7) и дросселируется терморегулирующим вентилем (17) в испаритель (3).

Терморегулирующий вентиль применяется для регулирования подачи хладагента в испаритель.

В испарителе хладагент кипит, забирая тепло от объекта охлаждения. Пары хладагента из испарителя через фильтр на всасывающей магистрали (11), где происходит очистка их от загрязнений, и отделитель жидкости (5) поступают в компрессор (1). Затем цикл работы холодильной машины повторяется.

Отделитель жидкости (5) предотвращает попадание жидкого хладагента в компрессор.

Для обеспечения гарантированного возврата масла в картер компрессора на выходе из компрессора устанавливаться маслоотделитель (6). При этом масло через запорный вентиль (24), фильтр (10) и смотровое стекло (13) по линии возврата масла поступает в компрессор.


Виброизоляторы (25),(26) на всасывающей и нагнетательной магистралях обеспечивают гашение вибраций при работе компрессора и препятствуют их распространению по холодильному контуру.

Компрессор оснащён картерным нагревателем (21) и двумя запорными вентилями (20).

Картерный нагреватель (21) необходим для выпаривания хладагента из масла, предотвращения конденсации хладагента в картере компрессора во время его стоянки и поддержания необходимой температуры масла.

В холодильных машинах с полугерметичными поршневыми компрессорами, у которых в системе смазки используется масляный насос, применяется реле контроля давления масла (18). Это реле предназначено для аварийного отключения компрессора в случае снижения давления масла в системе смазки.

В случае установки агрегата на улице он должен быть дополнительно укомплектован гидравлическим регулятором давления конденсации, для обеспечения стабильной работы в зимних условиях и поддержания необходимого давления конденсации в холодное время года.

Реле высокого давления (14) управляют включением/выключением вентиляторов конденсатора, для поддержания необходимого давления конденсации.

Реле низкого давления (15) управляет включением/выключением компрессора.

Аварийное реле высокого и низкого давлений (16) предназначено для аварийного отключения компрессора в случае пониженного или повышенного давления.

Пока техника исправно функционирует, пользователя не интересует, как она устроена. Знания о том, как работает холодильник, понадобятся, когда возникла поломка: помогут избежать серьезной неисправности или быстро определить место. Правильная эксплуатация также во многом зависит от осведомленности пользователя. В статье рассмотрим устройство бытового холодильника и его работу.

Как устроен компрессорный холодильник

«Атлант», «Стинол», «Индезит» и другие модели оснащаются компрессорами, которые запускают процесс охлаждения в камере.

Основные составляющие части:

  • Компрессор (мотор). Бывает инверторным и линейным. Благодаря запуску мотора фреон передвигается по трубкам системы, обеспечивая охлаждение в камерах.
  • Конденсатор - это трубки на задней стенке корпуса (в последних моделях может размещаться сбоку). Тепло, которое вырабатывает компрессор во время работы, конденсатор отдает окружающей среде. Так холодильник не перегревается.

Вот почему производители запрещают устанавливать технику возле батарей, радиаторов и печей. Тогда перегрева не избежать, и мотор быстро выйдет из строя .

  • Испаритель. Здесь фреон закипает и переходит в газообразное состояние. При этом забирается большое количество тепла, трубки в камере охлаждаются вместе с воздухом в отделении.
  • Вентиль для терморегуляции. Поддерживает заданное давление для движения хладагента.
  • Хладагент - это газ-фреон или изобутан. Он циркулирует по системе, способствуя охлаждению в камерах.

Важно правильно понимать, как работает техника: она не вырабатывает холод. Воздух охлаждается благодаря отбору тепла и его отдаче окружающему пространству. Фреон проходит в испаритель, поглощает тепло и переходит в парообразное состояние. Двигатель приводит в действие поршень мотора. Последний сжимает фреон и создает давление для его перегонки по системе. Попадая в конденсатор, хладагент остывает (тепло выходит наружу), превращаясь в жидкость.

Чтобы установить нужный температурный режим в камерах, устанавливается терморегулятор. В моделях с электронным управлением (LG, «Самсунг», «Бош») достаточно выставить значения на панели.

Переходя в фильтр-осушитель, хладагент избавляется от влаги и проходит по трубкам капилляра. После чего снова попадает в испаритель. Мотор перегоняет фреон и повторяет цикл, пока в отделении не установится оптимальная температура. Как только это случится, плата управления посылает сигнал пускозащитному реле, которое отключает двигатель.

Однокамерный и двухкамерный холодильник

Несмотря на одинаковое строение, различия в принципе работы все-таки есть. Старые двухкамерные модели оснащены одним испарителем для обеих камер. Поэтому, если при разморозке механически убирать наледь и задеть испаритель, из строя выйдет весь холодильник.

Новый двухкамерный шкаф имеет два отделения, каждый из которых оснащен испарителем. Обе камеры изолированы друг от друга. Обычно в таких случаях морозилка находится снизу, а холодильный отсек - сверху.

Поскольку в холодильнике есть зоны с нулевой температурой (читайте, что такое зона свежести в холодильнике), фреон охлаждается в морозилке до определенного уровня, а затем перемещается в верхнее отделение. Как только показатели достигают нормы, срабатывает терморегулятор, и пусковое реле отключает мотор.

Наиболее востребованы приборы с одим мотором, хотя с двумя компрессорами также набирают популярность. Последние функционируют так же, просто за каждую камеру отвечает отдельный компрессор.

Но не только в двухкамерной технике можно отдельно устанавливать температуру. Есть такие приборы («Минск» 126, 128 и 130), где установлены электромагнитные клапаны. Они перекрывают подачу фреона в отделение холодильника. Исходя из показаний регулятора температуры выполняется охлаждение.

Более сложная конструкция предусматривает размещение специальных датчиков, которые измеряют температуру снаружи и регулируют ее внутри камеры.

Как долго работает компрессор

Точные показания не указаны в инструкции. Главное, чтобы мощности мотора хватало на нормальную заморозку продукции. Существует общий коэффициент работы: если прибор функционирует 15 минут и 25 минут отдыхает, тогда 15/(15+25) = 0,37.

Если подсчитанные показатели оказались менее 0,2, значит нужно отрегулировать показания термореле. Более 0,6 указывает на нарушение герметичности камеры.

Абсорбционный холодильник

В данной конструкции рабочая жидкость (аммиак) испаряется. Хладагент циркулирует по системе благодаря растворению аммиака в воде. Затем жидкость переходит в десорбер, а потом в дефлегматор, где снова разделяется на воду и аммиак.

Холодильники данного типа редко используются в быту, поскольку в основе ядовитые компоненты.

Модели с No Frost и «плачущей» стенкой

Техника с системой Ноу Фрост сегодня на пике популярности. Потому что технология позволяет размораживать холодильник раз в год, только чтобы помыть. Особенности функционирования обеспечивают вывод влаги из системы, поэтому в камере не образуется лед и снег.

В морозильном отделении располагается испаритель. Холод, который он вырабатывает, распространяется по холодильному отделению с помощью вентилятора. В камере на уровне полок есть отверстия, куда выходит холодный поток и равномерно распределяется по отсеку.

После цикла работы запускается оттайка. Таймер запускает ТЭН испарителя. Наледь тает, и влага выводится наружу, где испаряется.

«Плачущий испаритель». Название основано на принципе, при котором во время работы компрессора на испарителе образуется наледь. Как только мотор отключается, лед тает, и конденсат стекает в сливное отверстие. Способ оттайки называется капельный.

Суперзаморозка

Функцию также называют «Быстрая заморозка». Она реализована во многих двухкамерных моделях «Хаер», «Бирюса», «Аристон». В электромеханических моделях режим запускается нажатием кнопки или поворотом регулятора. Компрессор начинает безостановочную работу до тех пор, пока продукты полностью не промерзнут как внутри, так и снаружи. После чего функцию нужно отключить.

Электронное управление автоматически отключает суперзаморозку, согласно сигналам термоэлектрических датчиков.

Электрическая схема

Чтобы самостоятельно отыскать причину неполадки, понадобится знание электрической схемы.

Ток, подающийся на схему, проходит такой путь:

  • идет через контакты термореле (1);
  • кнопки оттайки (2);
  • теплового реле (3);
  • пускозащитного реле (5);
  • подается на рабочую обмотку двигателя мотора (4.1).

Нерабочая обмотка двигателя пропускает напряжение больше заданного значения. При этом срабатывает пусковое реле, замыкает контакты и запускает обмотку. После достижения нужной температуры, контакты термореле размыкаются, и двигатель останавливает работу мотора.

Теперь вы понимаете устройство холодильника и как он должен работать. Это поможет правильно эксплуатировать прибор и продлить срок его использования.