Схемы терморегуляторов для котлов своими руками. Как сделать термореле для отопления своими руками

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры.

Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей. С помощью прибора можно предусмотреть изменение температуры по часам или задать необходимый режим на неделю вперед. Управлять прибором можно дистанционно: через смартфон или компьютер.

Для сложного технологического процесса, например, сталеплавильной печи, сделать терморегулятор своими руками – задача довольно непростая, которая требует серьезных знаний. Но собрать небольшое устройство для кулера или инкубатора под силу любому домашнему мастеру.

Для того, чтобы понять, как работает регулятор температуры, рассмотрим простое устройство, которое используется для открывания и закрывания заслонки шахтового котла и срабатывает при нагреве воздуха.

Для работы устройства были использованы 2 алюминиевые трубы, 2 рычага, пружина для возврата, цепочка, которая идет к котлу, и регулировочный узел в виде кран-буксы. Все комплектующие были смонтированы на котел.

Как известно, коэффициент линейного теплового расширения алюминия составляет 22х10-6 0С. При нагревании алюминиевой трубы длиной полтора метра, шириной 0,02 м и толщиной 0,01 м до 130 градусов Цельсия происходит удлинение на 4,29 мм. При нагреве трубы расширяются, за счет этого происходит смещение рычагов, и заслонка закрывается. При остывании трубы уменьшаются в длине, а рычаги открывают заслонку. Основной проблемой при использовании данной схемы является то, что точно определить порог срабатывания терморегулятора очень сложно. Сегодня предпочтение отдается устройствам на основе электронных элементов.

Схема работы простого терморегулятора

Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:

  • температурный датчик;
  • пороговая схема;
  • исполнительное или индикаторное устройство.

В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.

Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.

R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.

Внимание! В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.

Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.

Терморегулятор на трех элементах

Одним из элементарных устройств, на примере которого можно собрать и понять принцип работы, является простой терморегулятор своими руками, предназначенный для вентилятора в ПК. Все работы производятся на макетной плате. Если же существуют проблемы с пальником, то можно взять беспаечную плату.

Схема терморегулятор в этом случае состоит всего лишь из трех элементов:

  • силового транзистора MOSFET (N канальный), можно использовать IRFZ24N MOSFET 12 В и 10 А или IFR510 Power MOSFET;
  • потенциометра 10 кОм;
  • NTC термистора в 10 кОм, который будет выполнять роль сенсора температуры.

Термодатчик реагирует на повышение градусов, за счет чего срабатывает вся схема, и вентилятор включается.

Теперь переходим к настройке. Для этого включаем компьютер и регулируем потенциометр, задавая значение для выключенного вентилятора. В тот момент, когда температура приближается к критической, максимально уменьшаем сопротивление до того, как лопасти будут вращаться очень медленно. Лучше сделать настройку несколько раз, чтобы убедиться в эффективности работы оборудования.

Современная электронная промышленность предлагает элементы и микросхемы, значительно отличающиеся по виду и техническим характеристикам. У каждого сопротивления или реле есть несколько аналогов. Необязательно использовать только те элементы, которые указаны в схеме, можно брать и другие, совпадающие по параметрам с образцами.

Терморегуляторы для котлов отопления

При регулировке отопительных систем важно точно откалибровать прибор. Для этого потребуется измеритель напряжения и тока. Для создания работающей системы можно воспользоваться следующей схемой.

С помощью этой схемы можно создать наружное оборудование для контроля за твердотопливным котлом. Роль стабилитрона здесь выполняет микросхема К561ЛА7. Работа устройства основана на способности терморезистора уменьшать сопротивление при нагреве. Резистор подключается в сеть делителя напряжения электричества. Необходимую температуру можно задать с помощью переменного резистора R2. Напряжение поступает на инвертор 2И-НЕ. Полученный ток подается на конденсатор С1. К 2И-НЕ, который контролирует работу одного триггера, подключен конденсатор. Последний соединен со вторым триггером.

Контроль температуры идет по следующей схеме:

  • при понижении градусов напряжение в реле растет;
  • при достижении определенного значения вентилятор, который соединен с реле, выключается.

Напайку лучше производить на слепыше. В качестве элемента питания можно взять любое устройство, работающее в пределах 3-15 В.

Осторожно! Установка самодельных приборов любого назначения на системы отопления может привести к выходу из строя оборудования. Более того, использование подобных устройств может быть запрещено на уровне служб, осуществляющих подвод коммуникаций в вашем доме.

Цифровой терморегулятор

Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.

Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.

При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.

При создании любого из устройств важно не только правильно спаять саму схему, но и продумать, как лучше разместить оборудование. Необходимо, чтобы сама плата была защищена от влаги и пыли, иначе не избежать короткого замыкания и выхода из строя отдельных элементов. Также следует позаботиться об изоляции всех контактов.

Видео

Для автоматического поддержания температурного режима можно создать терморегулятор своими руками. Качественная самоделка будет выполнять свои функции не хуже, чем фабричный аналог. После тщательного изучения процесса сборки модернизация и ремонт не вызовут затруднений.

Понятие о температурных регуляторах

  • отопление в погребе;
  • нагрев паяльной станции;
  • циркуляционный насос котла.

Из приведенных примеров понятны базовые требования к точности, которую должна обеспечить подходящая схема терморегулятора. В некоторых ситуациях необходимо поддержание заданного уровня не ниже, чем ±1C°. Для контроля рабочих параметров нужна оперативная индикация. Существенное значение имеют нагрузочные способности.

Перечисленные особенности поясняют назначение типовых функциональных узлов:

  • значение температуры фиксируют специализированным датчиком (резистором, термопарой);
  • показания анализирует микроконтроллер или другое устройство;
  • исполнительный сигнал поступает на электронный (механический) переключатель.

К сведению. Кроме рассмотренных частей, схема термореле может содержать дополнительные компоненты для подачи питания на электронагреватель, другую мощную нагрузку.

Принцип работы

Любая схема термостата действует на одинаковых принципах. Информация о температуре сравнивается с установленным значением. Пересечение определенного уровня активизирует исполнительное устройство для коррекции контролируемого параметра нужным образом.

Виды

В простейшем варианте (реле холодильника) применяют механический переключатель. Для более точной регулировки (обороты двигателя) используют не только микроэлектронику, но и специализированное программное обеспечение.

Терморегулятор на трех элементах

Чтобы сделать простой терморегулятор своими руками схема для блока питания персонального компьютера подходит лучше других вариантов.

Термистором измеряют температуру в контрольной точке. Потенциометром устанавливают оптимальное значение для включения вентилятора. Изменять обороты данная схема не способна. Подключает индуктивную нагрузку MOSFET транзистор. Допустимо применение аналога с подходящими силовыми характеристиками.

Терморегуляторы для котлов отопления

Регулятор температуры своими руками можно сделать в рамках проекта модернизации старого котла. Не имеет значения вид топлива, хотя проще обеспечить хороший результат с применением газового оборудования.

Цифровой терморегулятор

В этом примере разработчики создавали устройство поддержания температурного режима в хранилище фруктов (овощей). Для анализа поступающих данных выбрана микросхема со следующими блоками:

  • таймеры;
  • генератор;
  • два компаратора;
  • модули обмена, сравнения и передачи данных.

При соответствующем положении переключателей светодиодная матрица показывает актуальное значение температуры или контрольный уровень. Кнопками в пошаговом режиме устанавливают нужный порог срабатывания.

Самодельный регулятор температуры

Создать функциональный термостат своими руками не слишком сложно. Тем не менее, надо реалистично оценивать собственные возможности. Следующие инструкции помогут принять правильное решение.

Простейшая схема

Чтобы исключить лишние трудности, применяют схему с блоком питания без трансформатора. Для выпрямления питающего напряжения используют обычный диодный мост. Необходимый уровень постоянной составляющей поддерживают стабилитроном. Конденсатором устраняют броски.

Типовой делитель подойдет для контроля напряжения. В одном плече устанавливают резистор, который реагирует на изменение температуры. Для управления исполнительным устройством подойдет реле.

Прибор для помещения

Это устройство можно использовать для поддержания температурного режима в мини-теплице, другом ограниченном объеме. Основной элемент – микросхема операционного усилителя, которая включена в режиме сравнения напряжений. Точную и грубую настройку порога срабатывания выполняют с помощью резисторов R5 и R4, соответственно.

На микросхеме LM 311

Этот вариант предназначен для подключения электрических теплых полов, других мощных нагрузок. Следует обратить внимание на повышенную надежность изделия, которая обеспечена гальванической развязкой цепей со слабыми и сильными токами.

Необходимые материалы и инструменты

В некоторых ситуациях понадобятся навыки изготовления сложной печатной платы. Простейшие схемы собирают за несколько минут с применением паяльника и технологии навесного монтажа. До выполнения рабочих операций необходимо приобрести:

  • комплектующие детали;
  • расходные материалы;
  • измерительную аппаратуру.

Список покупок составляют на основе выбранной электрической схемы. Для защиты устройства от неблагоприятных внешних воздействий и улучшения внешнего вида создают соответствующий корпус.

Достоинства и недостатки

Плюсы и минусы отдельных схем оценивают с учетом реальных условий эксплуатации. Иногда выгодно затратить время и деньги на стадии реализации идеи с целью продления срока службы готового изделия. Нет смысла создавать самоделку, если фабричный аналог с официальными гарантиями стоит дешевле.

Как грамотно установить

Чтобы продлить срок службы терморегулятора, пользуются следующими рекомендациями:

  • не устанавливают электронику без дополнительной защиты на открытом воздухе, в помещениях с повышенным уровнем влажности;
  • при необходимости в неблагоприятную среду выносят контрольный датчик;
  • исключают расположение регулятора напротив тепловых пушек, других «генераторов» холода или тепла;
  • для повышения точности выбирают место без активных конвекционных потоков.

Как отремонтировать

Самодельный термодатчик своими руками восстановить нетрудно, так как известна технология проверки (настройки). Инструкции по ремонту фабричных изделий можно найти на официальном сайте производителя.

Видео

Терморегуляторы повсеместно применяются в различных целях: в автомобилях, отопительных системах различного типа, холодильных камерах и печах. Их работа заключается в отключении или включении приборов после достижения определённой температуры. Простой механический терморегулятор своими руками сделать нетрудно. Современные конструкции имеют более сложную схему, но при некотором опыте можно сделать аналоги и таких стройств.

    Показать всё

    Механический терморегулятор

    На сегодня самые новые модели терморегуляторов управляются с помощью сенсорных кнопок, более старые модели - механическими. Большинство этих устройств имеют цифровую панель, где отображается температура теплоносителя в реальном времени, а также необходимый максимальный градус.

    Производство таких устройств не обходится без их программирования, поэтому их цена очень высокая. Они позволяют настроить температурный режим по разным параметрам, к примеру, по часам или дням недели. Температура при этом будет меняться автоматически.

    Если говорить о терморегуляторах для промышленных стальных печей, то сделать их самостоятельно будет сложно, так как они имеют сложную конструкцию и требуют внимания не одного специалиста. Такие в основном изготавливаются на заводах. Но сделать простой регулятор температуры своими руками для автономной отопительной системы, инкубаторов и т. п. - это несложная задача. Главное, придерживаться всех чертежей и рекомендаций по производству.

    Для того чтобы понять, как работает терморегулятор, можно разобрать простую механическую конструкцию. Она работает по принципу открывания и закрывания дверки (заслонки) котла, чем уменьшает или увеличивает доступ воздуха к камере сгорания. Реагирует датчик, конечно же, на температуру.

    Для производства такого устройства понадобятся следующие комплектующие :

    • пружина для возврата;
    • два рычага;
    • две алюминиевые трубки;
    • регулировочный узел (имеет вид кран-буксы);
    • цепочка, которая соединяет две части (термостат и дверку).

    Все комплектующие необходимо собрать и вмонтировать на котёл.

    Работает устройство благодаря свойству алюминия расширяться под воздействием температуры. В связи с этим заслонка и закрывается. Если температура уменьшается, алюминиевая труба остывает и уменьшается в размерах, поэтому заслонка приоткрывается.

    Но такая схема имеет и свои существенные минусы. Проблема в том, что определить таким образом, когда сработает заслонка, трудно. Чтобы приблизительно настроить механизм, нужны точные расчёты. Невозможно определить в точности насколько будет расширяться алюминиевая труба. Поэтому в большинстве случаев сейчас предпочитают устройства с электронными датчиками.

    Самодельный механический терморегулятор для шахтного котла

    Простой электронный прибор

    Для более точной работы автоматического регулятора температуры без электронных комплектующих не обойтись. Самые простые терморегуляторы работают по схеме на основе реле.



    Основными элементами такого устройства являются :

    • пороговая схема;
    • индикаторное устройство;
    • датчик температуры.

    Схема самодельного термостата должна реагировать на повышение (понижение) температуры и включать исполнительное устройство или приостанавливать его работу. Для реализации самой простой схемы следует использовать биполярные транзисторы. Термореле сделано по типу триггера Шмидта. Терморезистор будет выполнять функцию датчика температуры. Он будет изменять сопротивление в зависимости от температуры, которая настраивается в общем блоке управления.

    Но кроме терморезистора, термодатчиком могут выступать :

    • термисторы;
    • полупроводниковые элементы;
    • термометры сопротивления;
    • биметаллические реле;
    • термопары.

    Используя схемы и чертежи из неизвестных источников, стоит иметь в виду, что зачастую они не соответствуют приложенному описанию. В связи с этим необходимо тщательно изучить весь материал, до того как приступить к изготовлению устройства.

    Перед началом работ нужно определиться с температурным диапазоном устройства, а также его мощностью. Нужно учитывать, что для холодильника будут применяться одни комплектующие, а для отопительного оборудования - другие.

    Устройство из трёх комплектующих

    Простой электронный термостат своими руками можно собрать для использования на вентиляторах и персональных компьютерах. Таким образом, можно понять принцип его работы. В качестве основы используется макетная плата.

    Из инструментов понадобится паяльник, но если его нет или недостаточно опыта работы, то можно использовать и беспаечную плату.

    Схема состоит из трёх элементов :

    • силовой транзистор;
    • потенциометр;
    • термистор, который будет выполнять функцию датчика температуры.

    Термодатчик (термистор) реагирует на повышение градусов, в связи с этим вентилятор будет включаться.

    Для регулировки устройства сначала необходимо выставить данные для вентилятора в выключенном положении. После чего нужно включить компьютер и подождать когда он нагреется до определённой температуры, чтобы зафиксировать момент включения вентилятора. Настройка совершается несколько раз. Это позволит убедиться в эффективности работы.

    Сегодня современные изготовители различных элементов и микросхем могут предложить большой выбор запчастей. Все они отличаются по техническим характеристикам и внешнему виду.

    Терморегулятор своими руками

    Регуляторы температуры для отопительных систем

    При изготовлении и установке терморегулятора с датчиком температуры воздуха своими руками для отопительных систем необходимо точно откалибровать верхнюю и нижнюю черту. Это позволит избежать перегрева оборудования, что может привести к выходу из строя всей системы в лучшем случае. В худшем перегрев оборудования может привести к его взрыву и возможному летальному исходу.


    Для этих целей понадобится прибор для измерения силы тока. С помощью чертежей и схем можно сделать наружное оборудование для регулировки температуры твердотопливного котла. Для работы можно использовать схему К561ЛА7. Принцип функционирования заключается в той же способности терморезистора уменьшать или увеличивать сопротивление при определённых температурных условий. Нужные показатели можно задать с помощью резистора переменного тока. Сначала напряжение подаётся на инвертор, а потом передаётся на конденсаторы, которые соединены с триггерами и контролируют их работу.

    Принцип действия прост. При понижении градусов напряжение в реле возрастает. Если значение будет меньше нижних граничных показателей, вентилятор автоматически выключается.

    Напаивать элементы лучше на слепыше. В качестве блока питания можно использовать устройство, которое работает в пределах 3−15 В.

    Любое самодельное устройство, установленное на отопительную систему, может привести к выходу её из строя. Кроме этого, такие действия могут запрещаться службами государственного контроля. К примеру, если в доме установлен газовый котёл, то такое дополнительное оборудование может быть изъято газовой службой. В отдельных случаях даже выписываются штрафы.

    Терморегулятор для ТЭН своими руками: схема и инструкция

    Цифровое оборудование

    Для изготовления современного прибора с точной регулировкой необходимых градусов без цифровых комплектующих не обойтись.

    В качестве основной микросхемы используется PIC16F628A. С помощью такой схемы можно управлять различными устройствами электронного типа.

    Принцип работы тоже не является очень сложным. К трёхзарядному индикатору с общим катодом подаются значения заданной (необходимой) температуры и существующей на данный момент.

    Чтобы задать нужную температуру, в микросхеме есть два элемента sb1 и sb2, к которым в последующем припаиваются механические кнопки. Первый элемент служит для уменьшения температуры, а второй для увеличения.

    Установка значения гистерезиса выполняется с одновременным нажатием при настройке кнопки sb3.

    При самодельном изготовлении устройств важно не только правильно спаять и изготовить схему, но и разместить устройство на оборудовании в правильном месте. Сама плата должна быть защищена от попадания влаги и пыли, во избежание появления короткого замыкания, а соответственно выхода из строя устройства. Изоляция всех контактов также играет очень важную роль.

    Терморегуляторы

    Разновидности аппаратов на рынке

    Сегодня компании, которые производят такое оборудование, предлагают покупателю 3 основные разновидности устройств. Все они работают на разных внутренних сигналах. Именно их функция заключается в контроле над температурой и её выравнивании в зависимости от настроек прибора (верхней и нижней черты).



    Существует три вида внутренних сигналов :

    1. 1. Данные снимаются непосредственно с теплоносителя. В обиходе не очень популярный, так как его эффективность недостаточная. Принцип работы заключается в погружном датчике или другом подобном ему устройстве. Хотя с эффективностью есть проблемы, но на рынке относится к дорогому сегменту подобных устройств.
    2. 2. Внутренние воздушные волны. Этот вариант самый популярный, поскольку считается надёжным и экономичным. Он берёт данные не температуры теплоносителя, а непосредственно воздуха. Это позволяет добиться более высокой точности. Какой градус будет выставлен в блоке управления, такова и будет температура воздуха. Соединяется с отопительной системой с помощью кабеля. Такие модели постоянно усовершенствуются производителями, что делает их более удобными и функциональными.
    3. 3. Внешние воздушные волны. Функционирует на основе уличного датчика. Он срабатывает при любых изменениях погодных условий, и немедля реагирует, изменяя настройки отопительного оборудования.

    Такие аппараты могут быть как электрическими, так и электронными. Сигнал терморегуляторы могут получать в автоматическом или полуавтоматическом режиме. Работа и изменение температуры может происходить благодаря контролю за температурой радиаторов и веток магистрали или фиксируя изменения мощности котла.

    Сегодня на рынке есть много популярных моделей от топовых производителей, которые уже закрепили своё положение. К ним в первую очередь можно отнести E 51.716 и IWarm 710. Сам корпус небольших размеров и сделанный из пластполимера, который не горит. Несмотря на это в нём есть множество полезных функций. Дисплей, как на такие маленькие разеры, довольно большой. На нём отображаются все существующие данные. Стоят такие приборы в пределах 2500−3000 рублей.

    К функциональным особенностям первой модели можно отнести возможность её монтажа в стену в любом положении, температура регулируется одновременно от самого пола, а также наличия кабеля длиной в 3 м. При монтаже необходимо подумать о том, будет ли свободный доступ к устройству для беспрепятственного управления им.

    К вышеперечисленным плюсам можно добавить и некоторые минусы. К ним относится небольшй набор функций, которые есть в аналогах этих устройств. При пользовании это иногда вызывает дискомфорт. К тому же в этих моделях нет функции автоматического нагревания. Но при желании её можно доделать уже самостоятельно.

    Таким образом, сделать самостоятельно терморегулятор или приобрести и установить готовую модель не составит никакого труда, если в точности придерживаться всех схем, чертежей и инструкций по изготовлению и монтажу. Это оборудование позволит сэкономить время хозяев на ручной регулировке температуры определённых приборов.

В дождливую, снежную или слякотную погоду, всегда требуется после улицы, просушить обувь. Чтобы каждый раз не носить мокрую обувь к батарее, было решено сделать маломощный тёплый пол для сушки обуви в прихожей, возле входной двери. Как известно для контроля температуры тёплых полов необходим терморегулятор, его можно купить, но гораздо приятнее собрать устройство самостоятельно.

Технические характеристики:

  • Максимальный коммутируемый ток: в зависимости от применённого симистора и его охлаждения.
  • Рабочее напряжение: ~230В
  • Диапазон температур при указанных номиналах: +35…+55°C
  • Датчик температуры: выносной, тип NTC (отрицательного температурного коэффициента)

Работа терморегулятора

В момент включения устройства, сетевое переменное напряжение, через бестрансформаторный блок питания (R1,R2,C1,C3,C5,VD1,VD2) выпрямляется и стабилизируется до 15В, зелёный светодиод индицирует наличие напряжения. Делитель состоящий из R4,R5 и R9 задаёт порог включения/отключения терморегулятора, и поскольку пол холодный, R9 (термистор) имеет максимальное сопротивление около 10 кОм, при этом на регулирующий вход стабилитрона TL431, через R4,R5 поступает напряжение выше 2,5В, стабилитрон открыт. Ток проходит по цепочке VD3,R6,HL2,U1, оптосимистор открыт, красный диод индицирует об этом. Открытый оптосимистор U1 образует делитель R7,R8,C2, симистор VS1 включается, пол нагревается. В момент, когда температура пола увеличивается, сопротивление датчика R9 (термистор) уменьшается и в итоге наступает момент, когда напряжение на регулирующем входе стабилитрона становится ниже опорного 2,5В, TL431 закрыт, вслед за ним закрывается оптосимистор и симистор, красный светодиод гаснет,нагрев секции отключен. По мере остывания пола на несколько градусов процесс повторяется, устройство поддерживает заданную температуру.

Настройка и установка

R4 задаёт максимальную температуру, чем ниже сопротивление R4 ,тем будет выше максимальная температура нагрева нагревательной секции. R5 задаёт минимальную температуру, чем выше номинал сопротивления R5 ,тем шире диапазон регулирования температуры. R9 (термистор) является датчиком температуры, он уменьшает своё сопротивление при повышении температуры, таким образом он контролирует вкл/откл терморегулятора в зависимости от температуры пола. С помощью R7 можно регулировать мощность на выходе трморегулятора.

Порог включения/отключения терморегулятора следует настраивать после установки датчика R9. Выводы датчика нужно изолировать, например термоусадочной трубкой.

Датчик следует устанавливать вблизи нагревательной секции, например между витков нагревательного кабеля.

Все кабели и датчик нужно зашпаклевать, а концы вывести в распред.коробку. В дальнейшем на это пол ляжет кафельная плитка.

В моём случае, корпус терморегулятора изготовлен из ненужной розетки RJ-45

Плата разведена и подогнана для конкретного случая. И да, советую применить угловые винтовые клемники с прямыми клемниками будет очень неудобно.

Мощность нагревательной секции 300Вт, симистор необходимо установить через слюдяную прокладку на подходящий по габаритам радиатор, площадью 50см2 . Если мощность нагревательной секции не превышает 150Вт, то можно обойтись без радиатора.

Всем удачи! Берегите здоровье!

Внимание! Схема терморегулятора не имеет защиты от перегрева нагревательной секции!

З.Ы.: Смотрите комментарии к статье.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Полупроводниковые элементы
VS1 Симистор

BT136-600E

1 BT139-600 В блокнот
U1 Оптопара

MOC3061M

1 MOC3041 В блокнот
VD1 Диодный мост

DB104

1 В блокнот
VD2 Стабилитрон

1N4744A

1 В блокнот
VD3 ИС источника опорного напряжения

TL431

1 В блокнот
HL1 Светодиод L-132XGD 1 зелёный В блокнот
HL2 Светодиод L-132XID 1 красный В блокнот
Резисторы
R1 Резистор

1 мОм

1 В блокнот
R2 Резистор

51 Ом 1Вт

1 В блокнот
R3 Резистор

2.2 кОм

1 В блокнот
R4 Резистор

18 кОм

1 * В блокнот
R5 Переменный резистор 20 кОм 1 * В блокнот
R6 Резистор

1.1 кОм

1 В блокнот
R7 Резистор

270 Ом

1 * В блокнот
R8 Резистор

30 кОм

1

Необходимость настройки температурного режима возникает при использовании различных систем теплового или холодильного оборудования. Вариантов много, и все они требуют наличия управляющего устройства, без которого работа систем возможна либо в режиме максимальной мощности, либо на полном минимуме возможностей. Контроль и настройка производятся с помощью терморегулятора - устройства, способного воздействовать на систему через датчик температуры и включать или отключать её по необходимости. При использовании готовых комплектов оборудования блоки управления входят в комплект поставки, но для самодельных систем приходится собирать терморегулятор своими руками. Задача не самая простая, но вполне решаемая. Рассмотрим её внимательнее.

Принцип работы терморегулятора

Терморегулятор - это устройство, способное реагировать на изменения температурного режима. По типу действия различают терморегуляторы триггерного типа, отключающие или включающие нагрев при достижении заданного предела, или устройства плавного действия с возможностью тонкой и точной настройки, способные контролировать изменения температуры в диапазоне долей градуса.

Существуют две разновидности терморегуляторов:

  1. Механический. Представляет собой устройство, использующее принцип расширения газов при изменении температуры, или биметаллические пластины, изменяющие свою форму от нагревания или охлаждения.
  2. Электронный. Состоит из основного блока и датчика температуры, подающего сигналы об увеличении или понижении заданной температуры в системе. Используется в системах, требующих высокой чувствительности и тонкой регулировки.

Механические устройства не позволяют обеспечить высокой точности настройки. Они являются одновременно и датчиком температуры, и исполнительным органом, объединёнными в единый узел. Биметаллическая пластина, используемая в нагревательных устройствах, представляет собой термопару из двух металлов с разным коэффициентом теплового расширения.

Главное предназначение терморегулятора - автоматическое поддержание необходимой температуры

Нагреваясь, один из них становится больше другого, отчего пластина изгибается. Контакты, установленные на ней, размыкаются и прекращают нагрев. При охлаждении пластина возвращается в изначальную форму, контакты вновь замыкаются и нагрев возобновляется.

Камера с газовой смесью - чувствительный элемент термостата холодильника или отопительного терморегулятора. При изменениях температуры меняется объём газа, что вызывает перемещение поверхности мембраны, соединённой с рычагом контактной группы.

В терморегуляторе для отопления используется камера с газовой смесью, работающая по закону Гей-Люссака - при изменении температуры меняется объём газа

Механические термостаты надёжны и обеспечивают устойчивую работу, но настройка режима работы происходит с большой погрешностью, практически «на глазок». При необходимости тонкой настройки, обеспечивающей регулировку в пределах нескольких градусов (или ещё тоньше), используются электронные схемы. Датчиком температуры для них служит терморезистор, способный различить мельчайшие изменения режима нагрева в системе. Для электронных схем ситуация обратная - чувствительность датчика слишком высока и её искусственно загрубляют, доводя до пределов разумного. Принцип действия состоит в изменении сопротивления датчика, вызванном колебаниями температуры контролируемой среды. Схема реагирует на смену параметров сигнала и повышает/понижает нагрев в системе до получения другого сигнала. Возможности электронных блоков контроля намного выше и позволяют получить настройку температуры любой точности. Чувствительность таких термостатов даже избыточна, поскольку нагрев и охлаждение - процессы, обладающие высокой инерционностью, которые замедляют время реакции на смену команд.

Область применения самодельного устройства

Изготовление механического терморегулятора в домашних условиях достаточно сложно и нерационально, поскольку результат будет работать в слишком широком диапазоне и не сможет обеспечить требуемой точности настройки. Чаще всего собирают самодельные электронные терморегуляторы, которые позволяют поддерживать оптимальный режим температуры тёплого пола, инкубатора, обеспечивать желаемую температуру воды в бассейне, нагрев парилки в сауне и т.д. Вариантов применения самодельного терморегулятора может быть столько, сколько систем, подлежащих настройке и регулировке температурного режима, имеется в доме. Для грубой настройки с помощью механических устройств проще приобрести готовые элементы, они недороги и вполне доступны.

Преимущества и недостатки

Самодельный терморегулятор обладает определёнными достоинствами и недостатками. Плюсами устройства являются:

  • Высокая ремонтопригодность. Терморегулятор, сделанный самостоятельно, легко отремонтировать, поскольку его конструкция и принцип работы известны до мелочей.
  • Расходы на создание регулятора намного ниже, чем при покупке готового блока.
  • Существует возможность изменения рабочих параметров для получения более подходящего результата.

К недостаткам следует отнести:

  • Сборка такого устройства доступна только людям, имеющим достаточную подготовку и определённые навыки работы с электронными схемами и паяльником.
  • Качество работы устройства в большой степени зависит от состояния использованных деталей.
  • Собранная схема требует настройки и юстировки на контрольном стенде или с помощью эталонного образца. Получить сразу готовый вариант устройства невозможно.

Основной проблемой является необходимость подготовки или, как минимум, участие специалиста в процессе создания прибора.

Как сделать простой терморегулятор

Изготовление терморегулятора происходит поэтапно:

  • Выбор типа и схемы устройства.
  • Приобретение необходимых материалов, инструментов и деталей.
  • Сборка прибора, настройка, запуск в эксплуатацию.

Стадии изготовления прибора имеют свои особенности, поэтому их следует рассмотреть подробнее.

Необходимые материалы

В число необходимых для сборки материалов входят:

  • Фольгированный гетинакс или монтажная плата;
  • Паяльник с припоем и канифолью, в идеале - паяльная станция;
  • Пинцет;
  • Пассатижи;
  • Лупа;
  • Кусачки;
  • Изолента;
  • Медный соединительный провод;
  • Необходимые детали, согласно электрической схемы.

В процессе работы могут понадобиться и другие инструменты или материалы, поэтому данный список не следует считать исчерпывающим и окончательным.

Схемы устройств

Выбор схемы обусловлен возможностями и уровнем подготовки мастера. Чем сложнее схема, тем больше нюансов возникнет при сборке и настройке устройства. В то же время самые простые схемы позволяют получить лишь наиболее примитивные приборы, работающие с высокой погрешностью.

Рассмотрим одну из несложных схем.

В данной схеме в качестве компаратора используется стабилитрон

На рисунке слева изображена схема регулятора, а справа - блок реле, включающий нагрузку. Датчик температуры - это резистор R4, а R1 - переменный резистор, используемый для настройки режима нагрева. Управляющим элементом является стабилитрон TL431, который открыт до тех пор, пока на его управляющем электроде имеется нагрузка выше 2,5 В. Нагрев терморезистора вызывает снижение сопротивления, отчего напряжение на управляющем электроде падает, стабилитрон закрывается, отсекая нагрузку.

Другая схема несколько сложнее. В ней использован компаратор - элемент, производящий сравнение показаний термодатчика и эталонного источника напряжения.

Подобная схема с компаратором применима для регулировки температуры тёплого пола

Любое изменение напряжения, вызванное увеличением или уменьшением сопротивления терморезистора, создаёт разницу между эталоном и рабочей линией схемы, вследствие чего на выходе устройства генерируется сигнал, вызывающий включение или отключение нагрева. Подобные схемы, в частности, используются для регулировки режима работы тёплого пола.

Пошаговая инструкция

Порядок сборки каждого устройства имеет свои особенности, но некоторые общие шаги выделить можно. Рассмотрим ход сборки:

  1. Готовим корпус прибора. Это важно, поскольку оставлять плату незащищённой нельзя.
  2. Готовим плату. Если используется фольгированный гетинакс, придётся травить дорожки при помощи электролитических методов, предварительно нарисовав их нерастворимой в электролите краской. Монтажная плата с готовыми контактами значительно упрощает и ускоряет процесс сборки.
  3. Проверяем с помощью мультиметра работоспособность деталей, при необходимости заменяем их на исправные образцы.
  4. По схеме собираем и соединяем все необходимые детали. Необходимо следить за точностью соединения, правильной полярностью и направлением установки диодов или микросхем. Любая ошибка может привести к выходу из строя важных деталей, которые придётся приобретать снова.
  5. После окончания сборки рекомендуется ещё раз внимательно осмотреть плату, проверить точность соединений, качество пайки и прочие важные моменты.
  6. Плата помещается в корпус, производится пробный запуск и настройка работы устройства.

Как настроить

Для настройки прибора необходимо либо иметь эталонное устройство, либо знать номинал напряжений, соответствующих той или иной температуре контролируемой среды. Для отдельных устройств существуют собственные формулы, показывающие зависимость напряжения на компараторе от температуры. Например, для датчика LM335 такая формула имеет вид:

V = (273 + T) 0,01,

где Т - требуемая температура по Цельсию.

В других схемах настройка производится путём подбора номиналов регулировочных резисторов при создании определённой, известной температуры. В каждом конкретном случае могут быть использованы собственные методики, оптимальным образом подходящие к имеющимся условиям или используемому оборудованию. Требования к точности прибора также отличаются друг от друга, поэтому единой технологии настройки не существует в принципе.

Основные неисправности

Наиболее распространённой неисправностью самодельных терморегуляторов является нестабильность показаний терморезистора, вызванная низким качеством деталей. Кроме того, нередко встречаются сложности с настройкой режимов, вызванные несоответствием номиналов или изменением состава деталей, необходимых для правильной работы устройства. Большинство возможных проблем напрямую зависят от уровня подготовки мастера, производящего сборку и настройку прибора, так как навыки и опыт в этом деле значат очень много. Тем не менее, специалисты утверждают, что изготовление терморегулятора своими руками - полезная практическая задача, дающая неплохой опыт в создании электронных устройств.

Если уверенности в своих силах нет, лучше использовать готовое устройство, которых достаточно в продаже. Необходимо учитывать, что отказ регулятора в самый неподходящий момент может стать причиной серьёзных неприятностей, для устранения которых потребуются усилия, время и деньги. Поэтому, принимая решение о самостоятельной сборке, следует подойти к вопросу максимально ответственно и тщательно взвесить свои возможности.